
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 5205

National PDES Testbed
Report Series

The NIST
EXPRESS Toolkit:
mMm Existing
Applications

NATIONAL 1

TESTBED™!

June 15,1993

Donibes

; _j iininiiiiini v ■■■■■-""- '"""" ' ""''""""

19961011 044
DTXC QuAiiirT urspacTBD 1 NIST

NISTIR 5205

National PDES Testbed
Report Series

Sponsored by:

U.S. Department of Defense
NATIONAL

=<£ Washington, DC 20301-8000 TfTTn ° TESTBEDTI

CALS Evaluation and

Integration Office

The Pentagon

U.S. Department of Commerce

Ronald H. Brown, Secretary

National Institute of

Standards and Technology

Arati Prabhakar, Director

June 15,1993

The NIST
EXPRESS Toolkit:
Updating Existing
Applications

Don Libes

m

%
%

3

%S*^

The NIST EXPRESS Toolkit

Updating Existing Applications
Don Libes

Abstract
The NIST EXPRESS toolkit is a software library for building ExPRESS-related tools. The toolkit
was previously released in 1991, based on ISO TC184/SC4 N14 (familiarly called "EXPRESS

N14"). The current release is based on Draft International Standard (DIS) 10303-11 (N151) and
while the philosophical underpinnings are similar, much of the interface has changed significant-
ly. This paper describes changes that must be made to existing applications so that they can work
with the new toolkit.

This paper should be read by anyone maintaining software based upon the NIST EXPRESS toolkit.
This paper will also provide insight to people interested in the internals of EXPRESS implementa-
tions and some of the ways they have changed over time due to experience and the different
EXPRESS specifications.

Keywords: compiler, EXPRESS; implementation; National PDES Testbed; PDES; STEP

Context
The PDES (Product Data Exchange using STEP) activity is the United States' effort in support of
the Standard for the Exchange of Product Model Data (STEP), an emerging international standard
for the interchange of product data between various vendors' CAD/CAM systems and other man-
ufacturing-related software [1]. A National PDES Testbed has been established at the National
Institute of Standards and Technology to provide testing and validation facilities for the emerging
standard. The Testbed is funded by the Computer-aided Acquisition and Logistic Support
(CALS) program of the Office of the Secretary of Defense.

As part of the testing effort, NIST is charged with providing a software toolkit for manipulating
STEP data. The NIST EXPRESS Toolkit is a part of this. The toolkit is an evolving, research-ori-
ented set of software tools. This document is one of a set of reports (an overview of each appears
in [2]) which describe various aspects of the Toolkit.

Introduction
The bad news is: Much has changed. You will not be able to recompile applications without
changing them.

The good news is: The system is faster. Much faster. And the library conforms to the EXPRESS

DIS, and implements everything needed to do full resolution of all features of EXPRESS.

This document describes how to change your code to work with the new toolkit. Some of the
changes are not one-for-one; in this case, do not expect a direct replacement. You may be forced
to recode parts of an application.

While the intent of this document is to describe how to convert programs, we occasionally de-
scribe other features, especially if they provide additional important benefit in some way.

Draft International Standard
As this report is being written, the EXPRESS specification is now a Draft International Standard [7].
It has changed significantly from earlier drafts. Correspondingly, the toolkit has changed. There
is no support for anything not mentioned in the current EXPRESS DIS. In particular, schema files
must conform to the DIS. No attempt is made to process Schemas based on any other EXPRESS

specification.

Object-Oriented Engine
The previous version of the toolkit provided an object-oriented view of the internals. This view is
almost entirely gone. In particular, most of the OBJ functions no longer exist. A few such as OB-

Jf ree exist as empty macros only to ease the pain of converting to the new version.

Due to changes in the implementation, most of the functionality originally provided by the 00
engine is relatively straightforward to obtain without it. This section describes how to accomplish
this.

External Types
Some types are now stored in the dictionary rather than in the object. In particular, when retriev-
ing an object from a dictionary by name, the type of the object is set in the global DiCT_type as
a side-effect. The following code demonstrates how entities and functions in a scope could be lo-
cated and processed:

DictionaryEntry de;
Generic x;

DICTdo_init(scope->symbol_table,&de) ;
while (0 != (x = DICTdo(&de))) {

switch(DICT_type) {
case OBJ_ENTITY: /* do something specific to entities */

ENTITYdo_something((Entity)x);
break;

case OBJ_FUNCTION: /* do something specific to functions */
PDNCTIONdo_something((Function)x);
break;

}

}
DiCTdo_type_init, a variant of DlCTdo_init, provides a shorthand when looking for one
specific type in a dictionary. For example, the following code prints all the names of the Schemas:

DictionaryEntry de;
Schema s;

DICTdo_type_init(scope->symbol_table,&de,OBJ_SCHEMA);
while (0 != (s = (Schema)DICTdo(&de)))

printf("%s\n",SCHEMAget_name(s));

Internal Types
Once an object type is known, further typing information (i.e., subclasses) can be determined by
referencing the type element of the current structure. In most cases, the type value will act as a
tag for an associated union, typically called "u". This union contains the type-dependent data for
each structure.

For example, given a statement, it could be processed as follows:

switch (statement->type) {
case STMT_ALIAS:

ALIASdo_something(statement->u.alias);
break;

case STMT_LOOP:
LOOPdo_something(statement->u.loop);
break;

case . . .

}

Temporary Conversion Aids
As mentioned earlier, some of the old OBJ functions still exist simply to ease the pain of convert-
ing. Here are some notes on each:

OBJequal Does a shallow comparison. This is usually desirable now
that objects no longer point to structures containing object
information, but rather point to the structures of the true
data.

OBJf ree Does nothing. Since most toolkit functions no longer create
copies, this is usually desirable. In the special case that
memory should really be freed, you must use the object-spe-
cific free function.

OBJref Does nothing. Reference counting is no longer appropriate
on a system-wide basis.

OBJget_data Returns original object unchanged. This function originally
stripped the Object wrapper off of an object. Since
structs are no longer wrapped in Objects, there is no
need to do anything.

All other functions should be replaced with their object-specific counterparts. For example, in-
stead of

OBJcreate(Class_Linked_List,&errc);
use

LISTcreate()

Symbol
In the previous release, some objects were derived from Symbol. The most obvious use of Sym-
bol was to provide objects with a name. This could be retrieved with SYMBOLget_name.
Symbols have died along with the 00 engine. Thus, there is no way to apply SYMBOLget_name
to arbitrary objects.

To retrieve the name of an object, call the XXXget_name where xxx is the type name. For exam-
ple, the name of a Schema is:

SCHEMAget_name(schema)

Scopes
A variety of changes have been made to the scope mechanisms.

The scope resolution functions are completely different in order to match the change from single-
pass resolution to multiple-pass resolution. The description of these is beyond the scope of this
paper. Interested readers are referred to the Programmer's Reference [5].

SCOPEgetXXX
The following functions all retrieved a subset of information from a scope:

SCOPEget_types
SCOPEget_variables
SCOPEget_algorithms
SCOPEget_constants

In virtually all cases, these functions should be rewritten as an explicit scope traversal. Most ex-
isting usage of such functions are immediately followed by a list traversal anyway. Combining
these removes the overhead of creating, traversing, and destroying a list.

For example, a typical use of SCOPEget_types might have been written this way:

Linked_List list = SCOPEget_types(scope);
LlSTdo(list,s,Symbol)

print f("%a\n", TYPEget_name(s));
LISTod
OBJfree(list);

This should be rewritten as:

DictionaryEntry de;
Type t;

DICTdo_type_init(scope->symbol_table,&de,OBJ_TYPE);
while (0 != (t = (Type)DICTdo(&de)))

printf("%s\n",TYPEget_name(t));

The scope lookup functions have also been radically revised. Unfortunately, there is no simple
one-to-one substitution that can be suggested for these. Here are the new functions:

VARf ind Find an attribute (or variable or constant) reference in a
scope.

SCOPEf ind Find an object that is not inherited by the super/subtype hi-
erarchy.

SCOPEf ind_f or_rename Find the true object referenced from another schema.

EXPRESSf ind_schema Find the named schema. This may cause new schema files
to be read and parsed.

For efficiency, some of the scope functions also take an argument defining what object types
should be skipped while searching. This argument is a bit representation of the object types. It is
not the same thing as the types used by the dictionary (see External Types on page 2) which are
enum-like in nature .

For example, this provides a way of determining the type, given the (legal) attribute declaration:

Al: Al;
It is not sufficient to merely start searching at a superscope since types can be defined within the
current scopes. The important thing is to ignore attributes. An example piece of code might use
OBJ_TYPE_BITS I OBJ_ENTITY_BITS to find either a type or an entity. To find anything, use
TYPE_ANYTHING_BITS. A complete discussion of this can be found in the reference manual [5].

Implicit loop controls and ALIAS are handled by associating with them a scope of one element.

The remaining discussion about scopes is provided for completeness but is probably not of inter-
est to most readers.

The scope structure used to look like this:

struct Scope {
Linked_List parents;
Dictionary symbol_table;
Dictionary references;
Linked_List use;
int last_search;

1. The OBJ_XXX types are macro definitions rather than enumeration values. They are used in enum-like ways,
however defining these as a single enumeration type would prevent the addition of other types by application
programmers.

Boolean resolved;
};

Now it looks like this:

struct Scope {
Symbol symbol;
char type;
int search_id;
Dictionary symbol_table;
struct Scope *superscope;
union {

struct Procedure *proc;
struct Function *func;
struct Rule *rule;
struct Entity *entity;
struct Schema *schema;
struct Express *express;
struct Increment *incr;

} u;

};
The type and u elements are described elsewhere (see Internal Types on page 3). The symbol
originally inherited by the 00 system is now declared explicitly. search_id is just last_-
search renamed, superscope contains the information that was otherwise found in parents.
resolved is now contained within symbol. Use and Reference are described elsewhere (see
Use/Reference Changes on page 6).

Note that two nominal scopes do not appear in u: query and (enumeration) type. Both of these
need to be members of (or put another way "inherit behavior from") other structures. In an ob-
ject-oriented system, this would be called multiple inheritance. In our non-00 system, we simply
pick one structure and simulate the rest with some extra code.

Use/Reference Changes
In the previous release, Used and Referenced objects were actually copied from one schema to an-
other. Nonetheless, there were Use/Reference elements in the Scope structure which could be
used to determine whether objects were non-local.

The new release keeps a clean separation between local and non-local objects. Separate functions
are available to find objects in the local scope versus objects in the remote scope. For instance
SCOPEget_entities_supertype_order now no longer returns Used entities. Instead, use
SCHEMAget_entities_use to get Used entities and SCHEMAget_entities_ref to get Ref-
erenced entities.

No functions exist for certain obvious queries (such as "what schema is the owner of this object").
If more than a few such queries will be made by an application, it is cheaper to traverse the Use/
Reference data structures once rather than having the toolkit do it multiple times, once for each re-
quest. See the reference manual for more information on this.

Expressions
Except for expression types (see Types on page 7), most of the functions having to do with ex-
pressions from the previous release should work in the new release. However, the underlying
implementation is completely different. The following explanation is only provided in case the
provided functions are insufficient. The reader is referred to the reference manual for more com-
plete information.

In the previous release, Expressions relied heavily on the 00 inheritance. In the current sys-
tem, Expressions are quite explicit. The new definition of an Expression is:

struct Expression {
Symbol symbol;
Type type;
Type return_type;
struct Op_Subexpression e;
union expr_union u;

};
type is the syntactic type of the expression (expression-with-operands, function-call, etc.) while
return_type is the semantic type of the value returned (integer, real, set of real, etc.). One of e
(for operands) or u (for anything else) is used to hold type2-specific data depending on the value
of type and return_type.

Algorithms
Some of the algorithm access functions have been changed to be specific to the type of algorithm.
For example, ALGget_parameters should be changed to FDNCget_parameters, RULEget_-
parameters, or PROCget_parameters.

Types
Some of the functions having to do with Types from the previous release will work in the new re-
lease. However, the underlying implementation is completely different and some functions may
need some conversion. The following sections describe the impact in more detail. Unless other-
wise mentioned, functions from the previous release should still work.

Object Functions
Much of the typing was implicitly handled by the 00 engine. This typing is now explicit. In par-
ticular in the previous implementation OBJget_class was used to get the "class" of a type.
There is now no global notion of class, although the concept still exists for types. For this reason,
the old Class references have been fixed to continue to work but only on Types. Do not use
functions such as OBJget_class on anything but Types.

For consistency with all other functions, a type's "class" is now called a type's "type".

2. syntactic

Enumerations
Each enumeration type and item is represented by an Expression which contains a scope (see
Scopes on page 4). This is done in order to support different enumerations with common item
names. Thus, the function ENUM_TYPEget_items now returns a dictionary instead of a list.
Each element is an expression of type enumeration instead of a symbol.

Enumeration items are not only entered into the scope of the enumeration type definition, but they
are also entered into the immediately outer scope since that is where their primary visibility is re-
quired. In this higher scope, it is possible to find ambiguous enumerations. These are overloaded
enumeration items. Finding one normally indicates that the enumeration item name needs to be
qualified with the enumeration type name.

Libmisc and Other Directory Rearrangements
The libmisc library has been bundled in with the EXPRESS library, so this reference can be re-
moved from Makefiles. While libmisc was originally seen as a separate toolkit, it was heavily
customized only for use with the EXPRESS toolkit in this version. Because of this, there seemed no
point in keeping the include files separate. Thus, the EXPRESS and libmisc include files now
live in the EXPRESS source directory.

A description of specific changes follows:

OBJ Functions

The object engine is gone [see Object-Oriented Engine on page 2]. Some new object functions
exist, but these provide new functionality and are probably not of help in converting old code.

DICT Functions

The dictionary is slightly different. In particular, the dictionary not only explicitly knows the
name of an object, but it knows the type and the line number and file in which the object was orig-
inally found. This is necessary to make up for the missing 00 engine as well as to produce error
messages that understand multifile EXPRESS models.

STRING Functions

The string abstraction support routines have been removed. The abstraction allowed different
underlying representations for strings, but was incomplete to the point that users had to assume
that the usual C representation was used. It was pointless to complete the abstraction since the
Standard C library is now very rich in string support. Use the Standard C library string functions.

The typedef String and the function STRiNGequal continue to exist but are deprecated. All
other references to the string abstraction no longer exist.

Main

Default
The previous version of the toolkit provided a default main procedure that had a strong view of
how applications should look and feel. For instance, applications were expected to produce an
output file. For this reason, applications were expected to name their entry point as:

void print_file(Schema,FILE *);
The new toolkit provides a main, but it is significantly more configurable. A number of options
may be controlled by setting variables inside the user-defined function EXPRESSinit_init
which is called immediately at program start-up. To simulate the earlier interface, the variable
EXPRESSbackend is set to the application entry. This function must return void and take a sin-
gle argument of Express. For example:

ttinclude "express.h"
#include "resolve.h"

void print_file(Express);

void
EXPRESSinit_init() {

EXPRESSbackend = print_file;

}

EXPRESS init_init must be defined by the user as a true function which matches the example
above.

The new main is significantly more flexible and can likely replace main routines that had to be
handwritten in prior releases. You can find other flexibility provided by the new main in the ref-
erence manual.

Dynamic Loading
The express_dynamic package is gone. No one (to my knowledge) used this. The functional-
ity was not worth the increase in code space and the result was highly nonportable.

The express_static package is all that remains. This was modified so that it is invisible to the
application. All references to either of these options can be deleted.

Passes
All the references to passl and pass2 are gone. The following have direct substitutions:

Old New

void EXPRESSpass_2(Express) void EXPRESSresolve(Express)

Express EXPRESScreate();
Express EXPRESSpass_l(FILE *) void EXPRESSparse(Express,FILE *,

char *filename)

Either of the 2nd or 3rd arguments to EXPRESSparse may be null, but at least one must be non-
null. The filename is preferred since this can be used to generate more descriptive messages.

EXPRESSparse must always be preceded by EXPRESScreate, although not necessarily imme-
diately. In particular, EXPRESSparse may be called multiple times on the result returned by
EXPRESScreate. (This is useful when parsing new Schemas that are being added to Schemas
that have already been parsed.)

Warning Options
The interface to the warning system has been completely redesigned. Code such as:

warnings[ecnt].name = STRINGcopy("subtypes");
warnings[ecnt++].error = ERROR_unknown_subtype;

should be rewritten as:

ERRORcreate_option("subtypes",ERROR_unknown_subtype);
Once an option is created, no parsing is necessary to determine which option to set or unset.
Rather, the function ERRORset_option should be called with the option string as:

ERRORset_option(optarg,1);
The 2nd argument is a boolean describing whether the option should be set or unset. It is espe-
cially convenient to use one flag character to set an option and another to unset it. Then one can
say:

case 's': /* set */
case 'u': /* unset */

ERRORset_option(optarg,optchar == 's');
See the reference manual for more information.

Error Functions

Sorting
By default, diagnostics are printed immediately rather than buffering them up and sorting them by
line number. The underlying function to toggle this is defined as follows:

ERRORbuffer_messages(boolean);
While the buffering code has been speeded up (it used to call two extra processes, now it doesn't
call any), there is little point to sorting by line numbers. The order in which diagnostics are pre-
sented to the user are the order in which problems should be resolved. I.e., a missing schema will
be now detected immediately and will cause many spurious errors rather than vice versa.

ERRORreportwithline
ERRORreport_with_line still exists, however users are encouraged to use ERRORre-
port_with_symbol. Symbols now contains filenames describing the file in which the symbol
was encountered. This makes for more helpful diagnostics. If ERRORreport_with_line is
used, the filename is heuristically derived.

10

All diagnostics are formatted slightly differently than before. This change was made specifically
to support the Emacs compile hook [11] which manipulates the source and diagnostics in two sep-
arate windows. Each time the next-error function is invoked (typically by the two key
sequence: control-X backquote), both windows are scrolled so that the next diagnostic and the
corresponding source line are displayed.

How to Obtain the Toolkit
The toolkit and its documentation may be obtained in a variety of ways. The simplest way is
through anonymous ftp via the Internet. In this case, the source is /pub/step/npttools/exptk.tar.
Complete documentation on obtaining the toolkit and its documentation is /pub/step/ntpdocs/
exptk-obtaining-installing.ps.Z [17].

Alternately, it possible to receive the toolkit by email. To do this, send the following mail to ntps-
erver@ cme. nist.gov:

send step/npttools/exptk.tar.Z
send step/nptdocs/exptk-obtaining-installing.ps.Z

If you do not understand these instructions or for any other reason cannot successfully use ftp or
email, contact:

FASD - National PDES Testbed
National Institute of Technology and Standards
Bldg220,RmA-127
Gaithersburg, MD 20899

npt-info@cme.nist.gov
1-301-975-3508

Questions, Problems, and Support
While we are willing to listen to problems, requests for extension, etc., we cannot guarantee any
kind of response. Since the system is distributed in source form, you are encouraged to experi-
ment with the system, especially if you have problems with it. While it is often quicker for you to
have us diagnose your problems, it is quicker for us to have you diagnose your own problems.
This software is a research prototype, intended to spur development of commercial products.

Nonetheless, if you do have questions and/or problems, you may send e-mail to
hotline@cme.nist.gov. Please include Schemas, version numbers, platform descriptions, and any
other information that could be relevant.

References
[1] Mason, H., ed., "Industrial Automation Systems - Product Data Representation and Ex-

change - Part 1: Overview and Fundamental Principles", Version 9, ISO TC184/SC4/
WG PMAG Document N50, December 1991.

[2] Libes, Don, "The NIST EXPRESS Toolkit - Introduction and Overview", National Institute
of Standards and Technology, Gaithersburg, MD, to appear.

11

[3] Clark, Steve N., "An Introduction to The NIST PDES Toolkit", NISTIR 4336, National In-
stitute of Standards and Technology, Gaithersburg, MD, May 1990.

[4] Schenck, D., ed., "Exchange of Product Model Data - Parti 1: The EXPRESS Language", ISO
TC184/SC4 Document N496, July 1990.

[5] Libes, Don, "The NIST EXPRESS Toolkit - Programmer's Reference", National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

[6] Clark, Steve N., "QDES User's Guide", NISTIR 4361, National Institute of Standards and
Technology, Gaithersburg, MD, June 1990.

[7] Morris, K.C., "Translating EXPRESS to SQL: A User's Guide", NISTIR 4341, National In-
stitute of Standards and Technology, Gaithersburg, MD, May 1990.

[8] Spiby, P., ed., "ISO 10303 Industrial Automation Systems - Product Data Representation
and Exchange - Part 11: Description Methods: The EXPRESS Language Reference
Manual", ISO DIS 10303-11:1992(E), July 15, 1992.

[9] Morris, K.C., Sauder, David, and Ressler, Sandy, "Validation Testing System: Reusable
Software Component Design", NISTIR 1992-X, National Institute of Standards and
Technology, Gaithersburg, MD, September 1992.

[10] Johnson, S.C., "Yacc: Yet Another Compiler compiler", UNIX Programmer's Manual, Sev-
enth Edition, Bell Laboratories, Murray Hill, NJ, 1978.

[11] Schreiner, Axel T and Friedman, Jr., H. George, Introduction to Compiler Construction
with UNIX, New York, NY, Prentice Hall, 1985.

[12] Stallman, Richard M., et al, GNU's Bulletin, Free Software Foundation, Inc., Cambridge,
MA, June 1992.

[13] Lesk, M.E. and Schmidt, E., Lex: A Lexical Analyzer Generator, UNIX Programmer's
Manual, Seventh Edition, Bell Laboratories, Murray Hill, NJ, 1978.

[14] McLay, Michael J. and Morris, K.C., "The NIST STEP Class Library", C++ at Work-'90
Conference Proceedings, (reprinted as NISTTR 4411,) September 1990.

[15] Morris, K.C., "Architecture for the Validation Testing System Software", NISTIR 4742,
National Institute of Standards and Technology, Gaithersburg, MD, January 1992

[16] Libes, Don, and Clark, Steve N., "The NIST EXPRESS Toolkit - Lessons Learned", Proceed-
ings of the 1992 EXPRESS Users' Group (EUG '92) Conference, Dallas, Texas, October
17-18, 1992.

[17] Libes, Don, "The NIST EXPRESS Toolkit - Obtaining and Installing", National Institute of
Standards and Technology, Gaithersburg, MD, to appear.

12

